SAMPLE PAPER 6: PAPER 2

QUESTION 6 (25 MARKS)

Consider triangle *ADE*. Let $|\angle DAE| = \beta$.

[AE] is a diameter. Therefore, $|\angle ADE| = 90^{\circ}$. (The angle at the circle standing on a diameter is a right angle).

$$\therefore |\angle DEA| = 180^{\circ} - 90^{\circ} - \beta = 90^{\circ} - \beta$$

 $|\angle AED| + |\angle ABD| = 180^{\circ}$ (Opposite angles of a cyclic quadrilateral add up to 180° .)

$$\therefore |\angle ABD| = 180^{\circ} - (90^{\circ} - \beta) = 90^{\circ} + \beta$$

 $|\angle DAE| = |\angle ADB| = \beta$ (Alternate angles)

$$\therefore |\angle DAB| = 180^{\circ} - \beta - (90^{\circ} + \beta) = 90^{\circ} - 2\beta$$

$$\therefore |\angle BAC| = 90^{\circ} - \beta - (90^{\circ} - 2\beta) = \beta$$

$$\therefore |\angle BAC| = |\angle DAE| = |\angle ADB| = \beta$$